# Math Symbols

 MATH SYMBOLS Symbols Description .adslot_1 { width: 336px; height: 280px; } @media (max-width:350px) { .adslot_1 { width: 300px; height: 250px; } } Symbols Description $=$ is equal to $\vartriangle$ triangle $\ne$ is not equal to $\odot$ circle $\in$ is an element $m$ measurement $\notin$ is not an element AB Vector $/,s.t$ such that $cm$ are AB $>$ is greater than $1^\circ$ one degree $<$ is less than .adslot_1 { width: 336px; height: 280px; } @media (max-width:350px) { .adslot_1 { width: 300px; height: 250px; } } $\forall$ for all $\{ \,\} ,\,\phi$ empty set $mm$ millimeter $\wedge$ and $\widehat a$ unit vector of a $\vee$ or $\sim R$ row equivalent $\left| x \right|$ modulus of x $\sim C$ column equivalent $\subseteq$ subset $\sqrt x$ square root of x $\subset$ proper subset $\sqrt[n]{x}$ nth root of x $\cup$ union ${A^t}$ transpose of matrix A $\cap$ intersection L.H.S Left Hand Side - set difference R.H.S Right Hand Side $\Rightarrow$ implies that L.H.D Left Hand Derivative $\Leftrightarrow$ if and only if R.H.D Right Hand Derivative ${A^c}$ complement of set A w.r.t with respect to R.H.L Right Hand Limits $\frac{d}{{dx}}$ derivative w.r.t x $\because$ because $\int {dx}$ integral w.r.t x $\therefore$ therefore $m\angle$ measurement of angle $\angle$ angle $\ln$ natural logarithm $\cong$ congruent $i.e.$ that is $\bot$ perpendicular $e.g.$ for example $\parallel$ parallel $iff$ if and only if $\parallel$ gm Parallelogram $\cdots$ So on $\approx$ nearly equal to L.H.L Left Hand Limit