The line intersects the parabola at most two points and condition for such intersection is that .

Consider the standard equation of parabola with vertex at origin can be written as

Also equation of a line is represented by

To find the point of intersection of parabola (i) and the given line (ii), using the method of solving simultaneous equation we solve equation (i) and equation (ii), in which one equation is in quadratic and other is in linear form, so take value of

from equation (ii) and putting this value in equation (i) i.e. equation of parabola becomes

Since equation (iii) is a quadratic equation in

, and we can solve this quadratic equation either by completing square method or using quadratic formula and can have at most two roots i.e. values of

and putting values of

in equation (ii) to get the values of

and obtained two points. This shows that the line (ii) can intersect the parabola (i) at most two points. It is also clear from the given diagram.

Equation (iii) will have two real roots if

### Comments

comments