Formulas and Results of Complex Numbers

    1. $$z = (a,b) = a + ib,{\text{ }}i = (0,1)$$

    2. $$i = \sqrt { – 1} ,{\text{ }}{i^2} =- 1,{\text{}}{i^3} =- i,{\text{ }}{i^4} = 1,{\text{ }}{i^5} = i,{\text{ }} \ldots $$

    3. If $$n$$ is a positive integer, then $${(i)^{4n}} = 1,{\text{ }}{(i)^{4n + 1}} = i,{\text{ }}{(i)^{4n + 2}} =- 1,{\text{}}{(i)^{4n + 3}} =- i$$

    4. If $$a + ib = 0$$ then $$a = b = 0$$, and conversely

    5. If $$a + ib = c + id$$ then $$a = c$$ and $$b = d$$

    6. $$(a,b) + (c,d) = (a + c,{\text{ }}b + d)$$

    7. $$(a,b)(c,d) = (ac – bd,{\text{ }}ad + bc)$$

    8. $${z_1} + {z_2} = {z_2} + {z_1}{\text{ ;}}\forall {z_1},{z_2} \in \mathbb{C}$$

    9. $${z_1} \cdot {z_2} = {z_2} \cdot {z_1}{\text{ ;}}\forall {z_1},{z_2} \in \mathbb{C}$$

    10. $${z_1} + ({z_2} + {z_3}) = ({z_1} + {z_2}{\text{) + }}{{\text{z}}_{\text{3}}}{\text{ ;}}\forall {z_1},{z_2},{z_3} \in \mathbb{C}$$

    11. $${z_1} \cdot ({z_2} \cdot {z_3}) = ({z_1} \cdot {z_2}{\text{)}} \cdot {{\text{z}}_{\text{3}}}{\text{ ;}}\forall {z_1},{z_2},{z_3} \in \mathbb{C}$$

    12. $$(0,0)$$ is the additive identity.

    13. $$(1,0)$$ is the multiplicative identity.

    14. If $$z = a + ib$$ the multiplicative inverse of $$z$$ is $${z^{ – 1}} = \frac{a}{{{a^2} + {b^2}}} – i\frac{b}{{{a^2} + {b^2}}}$$

    15. The additive inverse of $$z$$ is $$ – z =- a – ib$$

    16. If $$z = a + ib$$, then $$\overline z = a – ib$$

    17. $$\overline {{z_1} + {z_2}}= \overline {{z_1}} + \overline {{z_2}} {\text{ ;}}\forall {z_1},{z_2} \in \mathbb{C}$$

    18. $$\overline {{z_1} – {z_2}}= \overline {{z_1}} – \overline {{z_2}} {\text{ ; }}\forall {z_1},{z_2} \in \mathbb{C}$$

    19. $$\overline {{z_1} \cdot {z_2}}= \overline {{z_1}}\cdot \overline {{z_2}} {\text{ ; }}\forall {z_1},{z_2} \in \mathbb{C}$$

    20. $$\overline {\left( {\frac{{{z_1}}}{{{z_2}}}} \right)}= \frac{{\overline {{z_1}} }}{{\overline {{z_2}} }}{\text{ ; }}\forall {z_1},{z_2} \in \mathbb{C}$$

    21. If $$\overline z = z$$, then $$z$$ is a real number.

    22. $$\overline {\left( {\overline z } \right)}= z$$

    23. If $$z = a + ib$$, $$a = \operatorname{Re} (z),{\text{ }}b = \operatorname{Im} (z)$$

    24. $$z{\text{ }}\overline z= {(\operatorname{Re} z)^2} + {(\operatorname{Im} z)^2}$$

    25. If $$z = a + ib$$, the $$\left| z \right| = \sqrt {{a^2} + {b^2}} $$

    26. $$\left| z \right| \geqslant 0$$

    27. $$\left| z \right| = \left| { – z} \right| = \left| {\overline z } \right|$$

    28. $${\left| z \right|^2} = z{\text{ }}\overline z $$

    29. $$\left| {{z_1}{z_2}} \right| = \left| {{z_1}} \right|\left| {{z_2}} \right|$$

    30. $$\left| {\frac{{{z_1}}}{{{z_2}}}} \right| = \frac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}{\text{, }}{z_2} \ne 0$$

    31. $$\left| {{z_1}} \right| – \left| {{z_2}} \right| \leqslant \left| {{z_1} + {z_2}} \right| \leqslant \left| {{z_1}} \right| + \left| {{z_2}} \right|$$

    32. $$\left| {{z_1} – {z_2}} \right| \geqslant \left| {{z_1}} \right| – \left| {{z_2}} \right|$$

    33. $$\left| {\operatorname{Re} z} \right| \leqslant \left| z \right|$$, $$\left| {\operatorname{Im} z} \right| \leqslant \left| z \right|$$

    34. $$\left| {{z_1} – {z_2}} \right| = \left| {{z_2} – {z_1}} \right|$$

    35. $$\left| {\left| {{z_1}} \right| – \left| {{z_2}} \right|} \right| \leqslant \left| {{z_1} – {z_2}} \right|$$

    36. $$z = r(Cos\theta + iSin\theta )$$ is polar form of $$z$$, where $$r = \left| z \right|{\text{ ;}}\theta = Ta{n^{ – 1}}\left( {\frac{b}{a}} \right) = \arg (z)$$

    37. If $${z_1} = {r_1}(Cos{\theta _1} + iSin{\theta _1})$$ and $${z_2} = {r_2}(Cos{\theta _2} + iSin{\theta _2})$$, then
  • $${z_1}{\text{ }}{z_2} = {r_1}{r_2}[Cos({\theta _1} + {\theta _2}) + iSin({\theta _1} + {\theta _2})]$$
  • $$\frac{{{z_1}}}{{{z_2}}} = \frac{{{r_1}}}{{{r_2}}}[Cos({\theta _1} – {\theta _2}) + iSin({\theta _1} – {\theta _2})]$$
  • $$\arg ({z_1}{z_2}) = \arg {z_1} + \arg {z_2}$$
  • $$\arg \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \arg {z_1} – \arg {z_2}$$
  1. $$CiS\theta = Cos\theta + iSin\theta = {e^{i\theta }}$$
  2. $${(z)^0} = 1$$
  3. $${(z)^{m + 1}} = {z^m}z$$
  4. $${(z)^{ – m}} = {({z^{ – 1}})^m}{\text{, }}m \in {\mathbb{Z}^ + }$$
  5. $${({z^m})^n} = {(z)^{mn}}$$
  6. $${({z_1}{z_2})^n} = {({z_1})^n}{({z_2})^n}$$
  7. $${(Cos\theta + iSin\theta )^n} = Cos{\text{ }}n\theta + iSin{\text{ }}n\theta $$. For all integers $$n$$ is called De-Moivre’s Theorem.