# Derivative of Hyperbolic Cotangent

In this tutorial we shall prove the derivative of the hyperbolic cotangent function.

Let the function be of the form

By the definition of the hyperbolic function, the hyperbolic cotangent function is defined as

Now taking this function for differentiation, we have

Differentiating both sides with respect to the variable , we have

Using the quotient formula for differentiation, we have

Using the formula of exponential differentiation , we have

By definition, , so we get

**Example**: Find the derivative of

We have the given function as

Differentiating with respect to variable , we get

Using the rule, , we get