The condition for a line to be tangent to the parabola is that and the tangent to the parabola is .

Consider the standard equation of parabola with vertex at origin can be written as

Also equation of a line is represented by

To find the point of intersection of parabola (i) and the given line (ii), using the method of solving simultaneous equation we solve equation (i) and equation (ii), in which one equation is in quadratic and other is in linear form, so take value of from equation (ii) and putting this value in equation (i) i.e. equation of parabola becomes

Since equation (iii) is a quadratic equation in , and we can solve this quadratic equation either by completing square method or using quadratic formula. If equation (iii) has equal real roots, then the line (ii) will intersect the parabola (i) at one point only and so is the tangent to the parabola..

Equation (iii) will have equal roots if

This is the condition for the line (ii) to be tangent to the parabola (i). Putting this value of in equation (ii), we have

This is the tangent to the parabola.