The line does not intersects the ellipse , so the condition for no intersection is that .

Consider the equation of a line is represented by

Consider the standard equation of ellipse with vertex at origin

can be written as

To find the point of intersection of straight line (i) and the given ellipse (ii), using the method of solving simultaneous equation we solve equation (i) and equation (ii). Putting the value of

from equation (i) in equation (ii), we have

Since equation (iii) is a quadratic equation in

and can have at most two roots. This shows that the line (i) can intersect the ellipse (ii) at most two points. It is also clear from the given diagram. If equation (iii) has imaginary roots, then the line (i) will not intersect the ellipse (ii) as shown in the given diagram

For Imaginary roots, we have

### Comments

comments