It is known from algebra that the simultaneous solution set of two equations of the second degree consists of four points. Therefore, two conics will always intersect in four points. These points may be all real and distinct, two real and two imaginary or all imaginary. Two or more points may also coincide.

__Example__**:** Find the points of intersection of the conics and .

We have two given conics

Now to find the point intersection of these two conics, solve the equations (i) and (ii) by using the method of simultaneous equations

Multiplying equation (ii) by , we get

Now adding equation (i) and (iii), we get

Putting the value of in equation (ii) to get the variable , we have

Thus, the points of intersection of the cones are .