# Logarithmic Differentiation

If is a complicated function, i.e. it involves several products of functions, quotients or radical signs, then we take logarithms on both sides which will make differentiation much easier. Such differentiation is called logarithmic differentiation.

Thus, taking logarithms on both sides of the given equation, we have

Differentiating both sides with respect to , we have

This shows that the result is the same as what we would have without taking .

__Example__**: **Differentiate

with respect to .

Consider the function

, then taking both sides, we get

Differenting both sides with respect to , we have