# Integration of Secant Cubed X

In this tutorial we shall discuss the integral of the secant cubed of , and this integration can be evaluated by using integration by parts. But first we break the power of the function from cube into square and one power of the function. Then we can use integration by parts of that function because we know the formula for the integration of secant square of from previous tutorials.

The integral of the secant cubed of is of the form

First we break into and , and now the integral (i) becomes

and are the first and second functions that form integration by parts. Using the formula for integration by parts, we have

Using the formula above, equation (ii) becomes

Now using trigonometric identity , we have

From our original problem , using this value we have