Examples of Limit

Example:
If f\left( {\text{x}} \right) = {{\text{x}}^3} -  2{{\text{x}}^2} + 3{\text{x}} - 7, then evaluate the limit\mathop {\lim }\limits_{{\text{x}}  \to 2} f\left( {\text{x}} \right).
Solution:
We have

f\left( {\text{x}} \right) =  {{\text{x}}^3} - 2{{\text{x}}^2} + 3{\text{x}} ? 7


\begin{gathered} \therefore \mathop {\lim }\limits_{{\text{x}}  \to 2} f\left( {\text{x}} \right) = \mathop {\lim }\limits_{{\text{x}} \to 2}  \left( {{{\text{x}}^3} - 2{{\text{x}}^2} + 3{\text{x}} - 7} \right) \\ \Rightarrow \mathop {\lim  }\limits_{{\text{x}} \to 2} f\left( {\text{x}} \right) = \mathop {\lim  }\limits_{{\text{x}} \to 2} \left( {{{\text{x}}^3}} \right) - \mathop {\lim  }\limits_{{\text{x}} \to 2} \left( {2{{\text{x}}^2}} \right) + \mathop {\lim  }\limits_{{\text{x}} \to 2} \left( {3{\text{x}}} \right) - \mathop {\lim  }\limits_{{\text{x}} \to 2} \left( 7 \right) \\ \Rightarrow \mathop {\lim  }\limits_{{\text{x}} \to 2} f\left( {\text{x}} \right) = {\left( {\text{2}}  \right)^3} - 2{\left( {\text{2}} \right)^2} + 3\left( {\text{2}} \right) - 7 =  8 - 8 + 6 - 7\;\;\;\; =  - 1 \\ \end{gathered}

Comments

comments