# Derivative of the Difference of Functions

It is given that two functions are in form and take derivative of difference of these two functions which is equal to difference of their derivatives. This can be proving by using derivative by definition or first principle method.

Consider a function of the form .

First we take the increment or small change in the function.

Putting the value of function in the above equation, we get

Dividing both sides by , we get

Taking limit of both sides as , we have

By definition of derivative we have

This shows that the derivative of difference of two given functions is equal to the difference of their derivatives.

This difference rule can be expand more than two function as

__Example__**:** Find the derivative of

We have the given function as

Differentiation with respect to variable , we get

Now using the formula derivatives, we have